On extremal trees with respect to the $F$-index

نویسندگان

  • Hosam Abdo
  • Darko Dimitrov
  • Ivan Gutman
چکیده

In a study on the structure–dependency of the total π-electron energy from 1972, Trinajstić and one of the present authors have shown that it depends on the sums ∑ v∈V d(v) 2 and ∑ v∈V d(v) , where d(v) is the degree of a vertex v of the underling molecular graph G. The first sum was later named first Zagreb index and over the years became one of the most investigated graph–based molecular structure descriptors. On the other hand, the second sum, except in very few works on the general first Zagreb index and the zeroth– order general Randić index, has been almost completely neglected. Recently, this second sum was named forgotten index, or shortly the F-index, and shown to have an exceptional applicative potential. In this paper we examine the trees extremal with respect to the F-index.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the extremal total irregularity index of n-vertex trees with fixed maximum degree

In the extension of irregularity indices, Abdo et. al. [1] defined the total irregu-larity of a graph G = (V, E) as irrt(G) = 21 Pu,v∈V (G) du − dv, where du denotesthe vertex degree of a vertex u ∈ V (G). In this paper, we investigate the totalirregularity of trees with bounded maximal degree Δ and state integer linear pro-gramming problem which gives standard information about extremal trees a...

متن کامل

Chain hexagonal cacti: extremal with respect to the eccentric connectivity index

In this paper we present explicit formulas for the eccentric connectivity index of three classes of chain hexagonal cacti. Further, it is shown that the extremal chain hexagonal cacti with respect to the eccentric connectivity index belong to one of the considered types. Some open problems and possible directions of further research are mentioned in the concluding section.

متن کامل

On augmented eccentric connectivity index of graphs and trees

In this paper we establish all extremal graphs with respect to augmented eccentric connectivity index among all (simple connected) graphs, among trees and among trees with perfect matching. For graphs that turn out to be extremal explicit formulas for the value of augmented eccentric connectivity index are derived.

متن کامل

The Signless Laplacian Estrada Index of Unicyclic Graphs

‎For a simple graph $G$‎, ‎the signless Laplacian Estrada index is defined as $SLEE(G)=sum^{n}_{i=1}e^{q^{}_i}$‎, ‎where $q^{}_1‎, ‎q^{}_2‎, ‎dots‎, ‎q^{}_n$ are the eigenvalues of the signless Laplacian matrix of $G$‎. ‎In this paper‎, ‎we first characterize the unicyclic graphs with the first two largest and smallest $SLEE$'s and then determine the unique unicyclic graph with maximum $SLEE$ a...

متن کامل

The Extremal Graphs for (Sum-) Balaban Index of Spiro and Polyphenyl Hexagonal Chains

As highly discriminant distance-based topological indices, the Balaban index and the sum-Balaban index of a graph $G$ are defined as $J(G)=frac{m}{mu+1}sumlimits_{uvin E} frac{1}{sqrt{D_{G}(u)D_{G}(v)}}$ and $SJ(G)=frac{m}{mu+1}sumlimits_{uvin E} frac{1}{sqrt{D_{G}(u)+D_{G}(v)}}$, respectively, where $D_{G}(u)=sumlimits_{vin V}d(u,v)$ is the distance sum of vertex $u$ in $G$, $m$ is the n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1509.03574  شماره 

صفحات  -

تاریخ انتشار 2015